Science

Questions

(A) Write the scientific term for each of the following:

1- The change of object's position as time passes. \qquad
2 - The physical quantity that is used to describe and measure the movement of objects.
(.....................)

3- The distance covered through a unit time.
(....................)

4- The change of object's position by equal distances at equal time intervals.
(.....................)

5- The change of object's position by unequal distances at equal time intervals.
(.....................)

6- The total distance covered by the moving object divided by the total time taken to cover this distance.
(.....................)

7- The speed of a moving object relative to the observer.
(.....................)

8- The change of an object's speed in one second. (.....................)
9 - The change of object's speed by equal values through equal time
intervals.
$(\ldots \ldots \ldots \ldots \ldots)$.
10- The physical quantity that has magnitude only. (....................)
11- The physical quantity that has magnitude and direction.
(....................)

12- The actual length of the path that a moving object takes from the start point to the end point.
(....................)

13- The length of the shortest straight line between two positions (primary and final position).
(....................)

14- The distance covered by the object in a certain direction.

(B) Give reason for:

1- Train motion is considered from the motion in one direction.
2- The object's speed increases as time decreases to cover the same distance.
3 - It is difficult to measure regular speed practically.
4- The moving car seems stable to an observer moves with the same speed and direction.

5- Length \& time are scalar physical quantities.
6- Force \& displacement are vector physical quantities.
7- Pilots take in consideration the velocity of the wind.

(C) What is meant by:

1- A train covers a distance 150 km in 2 hours.
2- A car moves with uniform speed $120 \mathrm{~km} / \mathrm{h}$.
3- The speed of a car equals zero.
4 - The average speed of a moving car is $40 \mathrm{~km} / \mathrm{h}$.
5- An object moves with acceleration $=5 \mathrm{~m} / \mathrm{s}^{2}$
6 - A body moves with negative acceleration equal $=-2 \mathrm{~m} / \mathrm{s}^{2}$.
7 - A car moves at uniform acceleration $=10 \mathrm{~m} / \mathrm{s}^{2}$.
8- The displacement of Alexandria from Cairo is 200 km . in western north direction.
9- Average velocity of a moving car is $60 \mathrm{~km} / \mathrm{h}$.

Science
(D) Which of the following graphs represents the movement of an object at :

1- Uniform speed.
2- Non-uniform speed.
3- Uniform acceleration.
4- Increasing acceleration
5- Decreasing acceleration.
6- Zero acceleration.
7- Rest.

(A)
Distance

Time
(B)
(D)

(C)

(E)
Distance

(F)

Science

(E) Problems

1) A racer covered a distance of 100 meter in 10 sec . in a straight line then he returned back walking in 80 sec . calculate the racer's speed while running, while returning back and during the whole trip.
2) Two cars move in the same direction car (A) moves at speed $30 \mathrm{Km} / \mathrm{h}$ and car (B) moves at speed $80 \mathrm{Km} / \mathrm{h}$, while car (C) moves in the opposite direction at speed $40 \mathrm{Km} / \mathrm{h}$ calculate the relative speed of car (B) relative to an observer
1- Stand on the ground.
2- in car (A).
3 - in car (C)
3) A train travels from Cairo to Alexandria a distance of 250 km in 2 hours find it's Speed.
4) A Boeing Plane moved from Aswan to Cairo in one hour it Covers a distance of 1000 km . Calculate the reading of The Speedometer by $(\mathrm{km} / \mathrm{h}$ \& m / s) if you know that the Plane moves with regular Speed.
5) Two trains move parallel to each other but in opposite direction, the speed of the first train $60 \mathrm{~km} / \mathrm{h}$ and the second is $90 \mathrm{~km} / \mathrm{h}$ Calculate The relative speed of the first that observed by passengers in the second train.
6) If a bus moves on a straight line, it's speed change from $8 \mathrm{~m} / \mathrm{s}$. to $20 \mathrm{~m} / \mathrm{s}$. within a period of 3 sec . What is the amount of acceleration?
7) Within 2.5 sec . the speed of a car reached $65 \mathrm{~m} / \mathrm{s}$ with acceleration $2 \mathrm{~m} / \mathrm{s}^{2}$ calculate the initial speed of the car.

Science
8) car moves at speed $60 \mathrm{~m} / \mathrm{s}$, then the driver used the break to stop the car through 20 sec . calculate the acceleration with which the car moves and mention its type?
9) if an object moves from rest regularly until its speed reaches $10 \mathrm{~m} / \mathrm{s}$ after 2 sec . from the start of moving, therefore :
a) The change of speed through the two seconds $=$ \qquad m/s
b) The change of speed through one second $=$ \qquad m/s
c) Acceleration $=$ \qquad $\mathrm{m} / \mathrm{s}^{2}$.
10) If a body starts its motion from point (a) covered 30 m . northward till point (b) within 30 sec , then 60 m . eastward till point (c) within 20 sec . then 30 m south world till point (d) within 10 sec . as shown in the figure calculate:

- The total distance.
- The total time.
- The displacement.
- The average speed \& average velocity of the body.

11) If a body moves from the point (a) to the point (c) passing by the point (b) then returning back to (C) as shown in the figure calculate:-

1- The distance covered by the body.
2 - The displacement done by the body.
3- The average speed.
4 - The average velocity.

12) If the measure of the angle between the incident ray \& reflected ray is 140, find the angle of incidence and the angle of reflection? What is the relation between them?
13) A person stands infront of a plane mirror at a distance of 10 meters. What is the distance he must move so that the distance between him and his image becomes 6 meters?
14) Find the focal length of a concave mirror that its diameter is 20 cm .

Model Answers

A) Write the scientific term:

1- motion
2- speed
3- speed
5- Non-uniform "irregular" speed.
7- relative speed
9- Uniform acceleration
11- vector physical quantity
13- Displacement

4- uniform "regular" speed
6- Average speed
8- Acceleration
10- Scalar physical quantity
12- Distance
14- Displacement

(B) Give reason:

1- Because train moves in straight line forward or backward but it doesn't move upward or downward.
2- Because speed $=\frac{\text { distance }}{\text { time }}$, so speed is directly proportional to the distance.

3- Because car's speed changes according to traffics.
4- Because relative speed equals zero.
5- Because they have magnitude only \& have no direction.
6 - Because they have magnitude \& direction.
7- Because when the plane flies against the wind direction, it consumes more fuel than when it flies in same direction of wind.

Science

(C) What is meant by:

1 - The speed of the train is $75 \mathrm{~km} / \mathrm{h}$.
2- The car covers 120 km every one hour.
3 - The car is at rest.
4- The total distance covered by the car divided by the total time taken to cover this distance equals 40.
5 - The body's speed increases by $5 \mathrm{~m} / \mathrm{sec}$. each one second.
6 - The body's speed decreases by $2 \mathrm{~m} / \mathrm{s}$ each one second.
7 - The body's speed changes with ($10 \mathrm{~m} / \mathrm{s}$) equal values through equal periods of time.

8- The length of shortest straight line between Alexandria \& Cairo in western north direction equals 200 km .

9- The rate of change of displacement of the car is $60 \mathrm{~km} / \mathrm{h}$.
(D)
1- (B), (D)
2- (E)
3- (A)
4- (A)
5- (C)
6- (D)
7- (F)

(E) Problems

1) $\mathrm{V}($ while returning $)=\frac{d}{t}=\frac{100}{10}=10 \mathrm{~m} / \mathrm{s}$
$\mathrm{V}($ while walking $)=\frac{d}{t}=\frac{100}{80}=1.25 \mathrm{~m} / \mathrm{s}$

$$
\overline{\mathrm{V}}=\frac{100+100}{10+80}=2.2 \mathrm{~m} / \mathrm{s}
$$

Science
2) 1- relative speed $=80 \mathrm{~km} / \mathrm{h}$

2- relative speed $=80-30=50 \mathrm{~km} / \mathrm{h}$.
3 - relative speed $=80+40=120 \mathrm{~km} / \mathrm{h}$.
3) $\mathrm{V}=\frac{d}{t}=\frac{250}{2}=125 \mathrm{~km} / \mathrm{h}$.
4) Speed $=\frac{d}{t}=\frac{1000}{1}=1000 \mathrm{~km} / \mathrm{h}$.

$$
=1000 \times \frac{1000}{60 \times 60}=277.7 \mathrm{~m} / \mathrm{s}
$$

5) Relative speed $=90+60=150 \mathrm{~km} / \mathrm{h}$
6) $\mathbf{a}=\frac{\text { final speed-initial speed }}{t}$

$$
=\frac{20-8}{3}=4 \mathrm{~m} / \mathrm{s}^{2}
$$

7) $t=2.5 \mathrm{sec}$. $\mathrm{v}_{2}=65 \mathrm{~m} / \mathrm{s} \quad, \quad \mathrm{a}=2 \mathrm{~m} / \mathrm{s}^{2}$

$$
\begin{aligned}
\Delta \mathrm{v}= & \mathrm{a} \times \mathrm{t} \\
& =2.5 \times 2=5 \mathrm{~m} / \mathrm{s} \\
\Delta \mathrm{v}= & \mathrm{v}_{2}-\mathrm{v}_{1} \\
\mathrm{v}_{1}= & \mathrm{v}_{2}-\Delta \mathrm{v} \\
& =65-5=60 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

8) $\mathrm{V}_{1}=\mathbf{6 0} \mathrm{m} / \mathrm{s}, \quad \mathrm{V}_{2}=0 \quad, \mathrm{t}=\mathbf{2 0} \mathbf{~ s e c}$.

$$
\mathrm{a}=\frac{v_{2}-v_{1}}{t}=\frac{0-60}{20}=-3 \mathrm{~m} / \mathrm{s}^{2} \quad \text { (-ve acceleration or deceleration) }
$$

9) $\quad \mathrm{V}_{1}=0 \quad, \quad \mathrm{~V}_{2}=10 \mathrm{~m} / \mathrm{s} \quad, \quad \mathbf{t}=2 \mathrm{sec}$.
a) $\Delta v=v_{2}-v_{1}=10-0=10 \mathrm{~m} / \mathrm{s}$
b) $\Delta v=5 \mathrm{~m} / \mathrm{s}$
c) $\mathrm{a}=\frac{10-0}{2}=5 \mathrm{~m} / \mathrm{s}^{2}$
10)

- Total distance $=30+60+30=120 \mathrm{~m}$
- Total time $=60 \mathrm{sec}$.
- Displacement $=60 \mathrm{~m}$ in east ward direction
- $\bar{V}($ average speed $)=\frac{\text { total distance }}{\text { total time }}=\frac{120}{60}=2 \mathrm{~m} / \mathrm{s}$
- Average velocity $=\frac{\text { total displacement }}{\text { total time }}$

$$
=\frac{60}{60}=1 \mathrm{~m} / \mathrm{s} \text { in east ward direction }
$$

11) 1- distance $=20+15=35 \mathrm{~m}$

2- displacement $=25 \mathrm{~m}$ in direction $\overrightarrow{\mathrm{AC}}$
3- Average speed $=\frac{\text { total distance }}{\text { time }}$

$$
=\frac{35}{15}=2.3 \mathrm{~m} / \mathrm{s}
$$

4- Average velocity $=\frac{\text { total displacement }}{\text { time }}$

$$
=\frac{25}{15}=1.6 \mathrm{~m} / \mathrm{s} \text { in direction } \overrightarrow{\mathrm{AC}}
$$

12) $=70^{\circ}$

Incidence angle = reflect angle
13) 7 meter
14) diameter $=20 \mathrm{~cm}$
radius $=\frac{20}{2}=10 \mathrm{~cm}$
So focal length $=\frac{\text { radius }}{2}=\frac{10}{2}=5 \mathrm{~cm}$

