

Geometry

<u>Unit (4)</u>

Trigonometry and Geometry

(1) Complete:

- a) 85° 38` 8`` = (i
- b) 56.18° =

(in degrees)

(in degrees, minutes and seconds)

(2) In the opposite figure:

 Δ ABC is a right angled triangle at B,

AB = 3 cm, AC = 5 cm, then

sin C × cos C =

- (3) If the ratio between the measures of two complementary angles is 3 : 4, find the degree measure of the greater angle in measure.
- (4) If the ratio between the measures of the interior angles of the triangle is 3 : 4 : 7, find the degree measure of each angle.

1

(5) In the opposite figure: ABC is a triangle in which $m (\angle A) = 90^{\circ}$, AC = 15 cm and AB = 20 cm

Midterm – First term Revision

Prove that: $\cos C \cos B - \sin C \sin B = zero$

(7) Without using calculator prove each of the following:

- a) $\cos 60^\circ = 2 \cos^2 30 1$
- b) $2\cos^2 30^\circ 1 = 1 2\sin^2 30$
- c) $\cos 60^\circ = \cos^2 30 \sin^2 30$
- d) $\cos^2 60 = 5 \sin^2 30 \tan^2 45^\circ$

(8) Find the value of x of each of the following:

- a) $x \sin^2 45^\circ = \tan^2 60^\circ$ b) $x \sin 30^\circ \cos^2 45^\circ = \sin^2 60^\circ$
- c) $\sin x \sin^2 60^\circ = 3 \sin^2 45^\circ \cos^2 45^\circ \cos 60^\circ$

Unit (5) Analytical geometry <u>Lesson (1) Distance between two points</u>

- (1) If A (3, 1), B (1, 2) and C (5, 4), prove that BC = 2 AB
- (2) Prove that the points A (4 , 3) , B (1 , 1) and C (-5 , -3) are collinear
- (3) Show the type of each of the following triangles according to its angles if its vertices are:
 - a) A (2 , 1) , B (4 , -2) , C (7 , 5)
 - b) A (4 , 4) , B (3 , -1) , C (-2 , 4)
 - c) A (1, -1), B (2, 1) and C (-3, -2)
- (4) Prove that the triangle with vertices of points: A (5, -5), B (-1, 7) and C (15, 15) is a right-angled Δ at B and find its area.
- (5) ABCD is a quadrilateral where A (2, 4), B (-3, 0), C (-7, 5) and D(-2, 4) prove that ABCD is a square.
- (6) Prove that: The points A (0, 1), B (4, 5), C (1, 8) and D (-3, 4) are vertices of a rectangle and find its diagonal length.
- (7) If A (x , 3) , B (3, 2) and C (5 , 1) and AB = BC, then find the value of x.
- (8) Find the value of a if the distance between the two points (a, 7),(-2, 3) equals 5 length unit.

Geometry

Model Answers

Trigonometry

- (1) a) 85.635 b) 56° 10` 48``
- (2) BC = 4 cm , sin C × cos C = $\frac{3}{5} \times \frac{4}{5} = \frac{12}{25}$
- (3) $1^{st} : 2^{nd} : sum$ 3 : 4 : 7 ? : ? : 90 $1^{st} angle = 38^{\circ} 34^{\circ} 17^{\circ}$ $2^{nd} angle = 51^{\circ} 25^{\circ} 42^{\circ}$
- (4) $1^{st} : 2^{nd} : 3^{rd} : sum$ 3 : 4 : 7 : 14 $1^{st} angle = 38^{\circ} 34^{\circ} 17^{\circ}$: : : 180 $2^{nd} angle = 51^{\circ} 25^{\circ} 42^{\circ}$ $3^{rd} angle = 90^{\circ}$

(5) BC = 25 cm

 $\cos C \ \cos B - \sin C \ \sin B = \frac{15}{25} \times \frac{20}{25} - \frac{20}{25} \times \frac{15}{25} = \text{zero}$

(6) $\tan C = \frac{opp.}{Adj} \rightarrow \frac{3}{4} = \frac{6}{BC} \rightarrow BC = \frac{6 \times 4}{3} = 8 \text{ cm}$ AC = 10 cm $\sin A + \cos A = \frac{8}{10} + \frac{6}{10} = \frac{14}{10} = \frac{7}{5}$

(7) Do it yourself