Questions

Unit (4)

Trigonometry and Geometry

(1) Complete:
a) $85^{\circ} 38^{\prime} 8^{\prime \prime}=$ \qquad
b) $56.18^{\circ}=$ \qquad (in degrees, minutes and seconds)
(2) In the opposite figure:
$\triangle A B C$ is a right angled triangle at B,
$A B=3 \mathrm{~cm}, A C=5 \mathrm{~cm}$, then

$$
\sin C \times \cos C=
$$

\qquad

(3) If the ratio between the measures of two complementary angles is $3: 4$, find the degree measure of the greater angle in measure.
(4) If the ratio between the measures of the interior angles of the triangle is $3: 4: 7$, find the degree measure of each angle.
(5) In the opposite figure:
$A B C$ is a triangle in which
$\mathrm{m}(\angle \mathrm{A})=90^{\circ}, \mathrm{AC}=15 \mathrm{~cm}$
and $A B=20 \mathrm{~cm}$

Prove that: $\cos C \cos B-\sin C \sin B=$ zero

$3^{\text {rd }}$ Preparatory
 Gcometry

(6) In the opposite figure:
$A B C$ is a right-angled Δ at B,
$A B=6 \mathrm{~cm}, \tan C=\frac{3}{4}$, find:

1) The length of each of $\overline{B C}$ and $\overline{A C}$
2) $\sin A+\cos A$
(7) Without using calculator prove each of the following:
a) $\cos 60^{\circ}=2 \cos ^{2} 30-1$
b) $2 \cos ^{2} 30^{\circ}-1=1-2 \sin ^{2} 30$
c) $\cos 60^{\circ}=\cos ^{2} 30-\sin ^{2} 30$
d) $\cos ^{2} 60=5 \sin ^{2} 30-\tan ^{2} 45^{\circ}$
(8) Find the value of x of each of the following:
a) $x \sin ^{2} 45^{\circ}=\tan ^{2} 60^{\circ}$
b) $x \sin 30^{\circ} \cos ^{2} 45^{\circ}=\sin ^{2} 60^{\circ}$
c) $\sin x \sin ^{2} 60^{\circ}=3 \sin ^{2} 45^{\circ} \cos ^{2} 45^{\circ} \cos 60^{\circ}$

$3^{\text {rd }}$ Preparatory
 Geometry

Unit (5) Analytical geometry

Lesson (1) Distance between two points

(1) If $A(3,1), B(1,2)$ and $C(5,4)$, prove that $B C=2 A B$
(2) Prove that the points $A(4,3), B(1,1)$ and $C(-5,-3)$ are collinear
(3) Show the type of each of the following triangles according to its angles if its vertices are:
a) $A(2,1), B(4,-2), C(7,5)$
b) $A(4,4), B(3,-1), C(-2,4)$
c) $A(1,-1), B(2,1)$ and $C(-3,-2)$
(4) Prove that the triangle with vertices of points: $\mathrm{A}(5,-5), \mathrm{B}(-1,7)$ and $C(15,15)$ is a right-angled Δ at B and find its area.
(5) $A B C D$ is a quadrilateral where $A(2,4), B(-3,0), C(-7,5)$ and D $(-2,4)$ prove that $A B C D$ is a square.
(6) Prove that: The points $A(0,1), B(4,5), C(1,8)$ and $D(-3,4)$ are vertices of a rectangle and find its diagonal length.
(7) If $A(x, 3), B(3,2)$ and $C(5,1)$ and $A B=B C$, then find the value of x.
(8) Find the value of a if the distance between the two points (a, 7), $(-2,3)$ equals 5 length unit.

Model Answers

Trigonometry

(1)
a) 85.635
b) $56^{\circ} 10^{\prime} 48^{\prime \prime}$
(2) $B C=4 \mathrm{~cm} \quad, \sin C \times \cos C=\frac{3}{5} \times \frac{4}{5}=\frac{12}{25}$
(3) $1^{\text {st }}: 2^{\text {nd }}:$ sum
3: 4:7
?:?:90
$1^{\text {st }}$ angle $=38^{\circ} 34^{\circ} 17^{\prime}$
$2^{\text {nd }}$ angle $=51^{\circ} 25^{\prime} 42^{\prime}$
(4) $1^{\text {st }}: 2^{\text {nd }}: 3^{\text {rd }}:$ sum

$3: 4: 7$	$: 14$	$1^{\text {st }}$ angle $=38^{\circ} 34^{{ff1ab1001-6a2c-4f87-8b3f-82953a6d36c8}} 42^{\prime}$
$3^{\text {rd }}$ angle $=90^{\circ}$		

(5) $\mathrm{BC}=25 \mathrm{~cm}$
$\cos C \cos B-\sin C \sin B=\frac{15}{25} \times \frac{20}{25}-\frac{20}{25} \times \frac{15}{25}=$ zero
(6) $\tan \mathrm{C}=\frac{o p p .}{A d j} \rightarrow \frac{3}{4}=\frac{6}{\mathrm{BC}} \rightarrow \mathrm{BC}=\frac{6 \times 4}{3}=8 \mathrm{~cm}$
$A C=10 \mathrm{~cm}$
$\sin A+\cos A=\frac{8}{10}+\frac{6}{10}=\frac{14}{10}=\frac{7}{5}$
(7) Do it yourself

