Large numbers "Hundred thousands , Millions and Milliards"

1) Write the following numbers in words:
a) 638194 :
b) 1200300 :
c) 25000456 :
d) 1450234000 : \qquad

2) Write the following numbers in digits:

a) Nine hundred sixty four thousand, five hundred and ninety-three
b) Seven hundred twenty thousand, and eight:
c) Thirty million, nine hundred fifty one thousand:
d) Five milliard, sixteen million, four hundred and eighty-three
\qquad
3) Complete:
a) Million $+\ldots$. Thousand $+\ldots=70947013$
b) Twenty four million, thirty one thousand and five $=$
c) The greatest number formed from $9,7,1,0,6,8$ and 5 is
d) The place value of 7 in 357040210 is
e) Seven hundred thousand and four is written as
f) 100000 is just after.
g) 800600400 < < 800700300
h) $170000,180000,190000$,
i) One milliard = millions = thousands
j) $500000+200+3=$
k) $=50$ million +72 thousand +278
I) $\frac{1}{2}$ million $=$ \qquad
m) $\frac{1}{4}$ million $=$ \qquad
n) $\frac{3}{4}$ million $=$ \qquad
o) $\frac{1}{4}$ milliard $=$ \qquad
p) $\frac{1}{2}$ milliard $=$ \qquad
q) $\frac{3}{4}$ milliard $=$ \qquad
r) $3 \frac{1}{4}$ milliard $=$
4) Put the suitable sign ($>,<$ or $=$):
a) 37 hundred million \square three milliard
b) The smallest 8-digit number \square The greatest 7-digit number
c) 450 thousand, and $20 \quad \square 450200$
d) The value of 6 in 624245 \square 600×1000
5) Arrange the following numbers in order:
a) $252379,262379,225379$ and 225397

The ascending order: \qquad
\qquad
b) $3300333,33330300,333300,3300300$

The descending order: \qquad . \qquad , .
6) Write suitable numbers in the rectangles according to their Places on the

Operations on Large numbers
 "Adding and subtracting large numbers"

1) Find:
a) 354624
b) 5870361

+ 68259
- 4965689
\qquad
\qquad
c) 3246239 + three hundred thousand = \qquad
d) $7279324-5$ millions = \qquad
e) \qquad $+7618149=10869183$
f) $3108721-$ \qquad = 2857101

2) Story problems:

a) The ministry of health vaccinated 9876543 children last year and 845 6783 children this year. Calculate the total number of the vaccinated children.
\qquad
b) A factory produced 2987543 toys in one-year .The next year the factory produced 3267594 toys. Find the difference between the products in the two years.

"Multiplying a whole number by another"

1) Find: (with steps)

a) 5342
c) 8305
b) 6805
c) 7265
$\times \quad 46$
$\begin{array}{r}83 \\ \hline\end{array}$

d) $508 \times 85=$ \qquad
e) $9375 \times 7=$ \qquad
2) Story problems:
a) The price of one kilogram of apples is P.T. 850. Find the price of 7 kilograms.

The price of 7 kilograms $=$ \qquad $=$ L.E \qquad

b) A cyclist covers 65 metres each minute. How many meters does he cover in a quarter of an hour?

He covers $=$ \qquad $=$ \qquad

"Dividing a whole number by a 1-digit number"

	Quotient	Dividend \div Divisor $=$ Quotient , Remainder
Divisor	Dividend	Dividend $=($ Divisor \times Quotient $)+$ Remainder

1) Find: (with steps)
a) $6534 \div 2=$ \qquad
b) $9365 \div 5=$ \qquad
c) $6444 \div 9=$ \qquad
d)
$2 \longdiv { 5 3 4 2 }$
f)
$5 \longdiv { 4 6 8 0 5 }$
g)

2) Story problems:

a) Shahd saved L.E. 9225 in 5 months, Calculate how much did she save in one month?

She saved = \qquad $=$ \qquad
b) 328 tourists want to visit the pyramids by buses. If they are divided

Into 8 buses. Find how many tourists can each bus hold?
 The bus holds = \qquad $=$ \qquad

"Dividing a whole number by a 2-digit number"

1) Find: (with steps)
a)

d)
$2 5 \longdiv { 1 5 5 0 }$
b)

e)

c)

f)

3) Story problems:

a) A man bought 52 boxes of mango for L.E. 3 640. Find the price of each box.?
b) Ayaat bought a TV set for L.E. 1660 , she paid L.E. 340 and the rest was divided on 24 equal installments. Find the value of each installment?

Unit test

1) Complete:

a) 9451024300 is read as \qquad
b) The smallest different 7-digit number is
c) The million is the smallest number formed from digits
d) Ten million is the smallest number formed from digits
e) The place value of the digit 8 in 8394565 is and its value is \qquad
f) 32 million , 10 thousand, 12 in digits is \qquad
g) 350 tens $=$ \qquad hundreds
h) $3092000=$ \qquad millions \qquad thousand
i) $50 \times 40=$ \qquad Hundreds
j) $805 \times 100=$ $\times 10$
k) Three millions, three thousands and three in digits is \qquad
l) $\frac{1}{2}$ million $=$ \qquad
m) $\frac{1}{4}$ milliard $=$ \qquad thousands
n) Dividend $=($ divisor \times \qquad) + \qquad
a) $4803 \times 67=$ \qquad
b) $4503 \times 59=\ldots \ldots .$.
c) $2525 \div 25=$..
d) $1508 \div 36=$

3) Story problems

a) A number, if it is divided by 11 the quotient is 488 and the remainder is 4 . What is this number?
b) Eman bought 24 meters of cloth for L.E. 648 .Find the price of one meter.
c) In a school, if 756 pupils are distributed equally on 18 classes. Find the number of pupils in each class.
d) Hazem bought 26 books from the book fair on series of animal world . If the price of one book is P.T 725 . Find the money that Hazem paid.
e) Reda bought a TV set for L.E 4420 . He paid L.E 500 in cash , then he paid the rest in 28 equal installments. Find the value of each installment.
f) Sally bought 26 meters of cloth for L.E 286. Find the price of 8 meters of the same kind?

Unit two

Geometry

"Relation between two straight lines"

1) Write the relation between each two straight lines :-

2) Look at the figure opposite , then complete :-
a) $\overleftrightarrow{\mathrm{AB}} \ldots . . . \overleftrightarrow{\mathrm{BC}}(\perp, / / \quad)$
b) $\overleftrightarrow{\mathrm{AB}} \ldots \overleftrightarrow{\mathrm{YZ}}(\perp, / /)$
c) $\overleftrightarrow{A Y}$ intersects with $\overleftrightarrow{B Z}$ at the point

3) Complete :-

a) The two perpendicular straight lines make angle with measure \qquad .. ${ }^{\circ}$
b) The two lines which are never intersect are called \qquad lines
c) The two intersecting straight lines may be \qquad or

"Polygons"

1) Write the name of each figure :-

2) Complete :-

a) The polygon
 is called \qquad
b) The four sides are equal in length in \qquad and \qquad
c) The two diagonals are equal in length in \qquad and
d) The two opposite sides are parallel in \qquad
\qquad
\qquad and \qquad
e) The quadrilateral which has only two parallel sides is \qquad
f) The two diagonals are perpendicular in \qquad and \qquad
g) The polygon which has five sides is called \qquad and the polygon with sides is called heptagon
h) The four angles are right in \qquad ., \qquad

3) Draw the rectangle XYZL in which its two dimensions are 5 cm and 3 cm , then complete:-
a) $X Y=\ldots=$ \qquad cm and $Y Z=$ \qquad $=$ \qquad = \qquad cm
b) $\overline{X Y} / / \ldots \ldots$ and $\overline{X Y} \perp \ldots \ldots$.
c) $\overline{\mathrm{YZ}} / / \ldots \ldots$ and $\overline{\mathrm{YZ}} \perp \ldots \ldots$.

" The Triangle "

1) Complete :-

a) The Triangle is a polygon with \qquad sides \qquad angles and \qquad vertices
b) The sum of the interior angles of any triangle $=$ \qquad .
c) The types of the triangle according to its side lengths are \qquad and \qquad
d) The types of the triangle according to its measures of angles are \qquad .,
\qquad and \qquad
e) Any triangle has at least \qquad acute angles
f) The type of The Triangle with sides lengths $7 \mathrm{~cm}, 7 \mathrm{~cm}$ and 6 cm is
\qquad .triangle
g) The type of The Triangle with measures angles $75^{\circ}, 30^{\circ}$ and 75° is \qquad angled triangle.
h) In The Triangle $A B C, m(\angle A)=80^{\circ}, m(\angle B)=50^{\circ}$ Then $m(\angle C)=$ \qquad . ${ }^{\circ}$
i) In The Triangle $X Y Z, m(\angle X)=m(\angle Y)=45^{\circ}$ Then This triangle is \qquad .angled triangle.
2) Draw $\triangle A B C$ in which $A B=5 \mathrm{~cm}, \mathrm{~m}(\angle \mathrm{~A})=50^{\circ}$ and $\mathrm{m}(\angle B)=60^{\circ}$, then answer the following :-
a) Find $\mathrm{m}(\angle \mathrm{C})$ without using protractor
b) Determine the type of the triangle according the length of its sides and according to
the measure of its angles

3) Draw $\triangle \mathrm{XYZ}$ in which $\mathrm{DE}=8 \mathrm{~cm}, \mathrm{EF}=6 \mathrm{~cm}$ and $\mathrm{m}(\angle \mathrm{E})=65^{\circ}$, Then state the type of this triangle according to its sides length.

Unit test

1) Complete:

a) The polygon which has four sides is called a
b) The polygon with six sides is called \qquad
c) The pentagon is the polygon with sides
d) The two diagonals of the parallelogram \qquad
e) The two diagonals of the rectangle \qquad and
f) The two diagonals of the rhombus \qquad and
g) The two diagonals of the square \qquad . , \qquad and
h) The four sides are equal in length in \qquad and \qquad
i) The measure of each angle in the rectangle $=$ \qquad -
j) The quadrilateral that has exactly one pair of parallel sides is called \qquad
k) The two perpendicular straight lines make \qquad right angles
I) The measure of each angle in an equilateral triangle \qquad .
m) $30^{\circ}, 60^{\circ}, 90^{\circ}$ are the measure of angles of \qquad triangle.
n) If the side lengths of a triangle are different, then the triangle is called \qquad
o) If the two side lengths of a triangle are equal , then the triangle is called \qquad
p) If the three side lengths of a triangle are equal, then the triangle is called \qquad
q) If the triangle of sides $7 \mathrm{~cm}, 5 \mathrm{~cm}$ and 7 cm , its called \qquad
r) The sum of the measure of the interior angles of any triangle = \qquad ${ }^{\circ}$
s) In triangle $A B C, m(\angle A)+m(\angle B)+m(\angle C)=$ \qquad
t) The quadrilateral has \qquad diagonals
u) The polygon which has no diagonals is \qquad
v) The sum of the interior angls of the square (rectangle) is \qquad。

2) Draw

a) Draw the triangle $A B C$ in which $A B=B C=6 \mathrm{~cm}, \mathrm{~m}(\angle A B C)=70^{\circ}$. then state the type of the triangle according to its angles and its sides .
b) Draw the triangle XYZ which $\mathrm{XY}=5 \mathrm{~cm}$, and $\mathrm{m}(\angle \mathrm{X})=75^{\circ}, \mathrm{m}(\angle \mathrm{Z})=$ 60°, then find:
(1) The type of the triangle according to its side lengths.
(2) The type of the triangle according to its measures of angles.

Unit three

Multiples, Factors and Divisibility

" Multiples "

If a number is multiplied by 2 , then the product is a multiple of 2
Since $2 \times 3=6$ then 6 is a multiple of 2
The products $0,2,4,6,8,10$, are called multiples of 2

- The multiples of 2 are called even numbers
- Zero is a multiple of any number
- Any number is a multiple of itself
- $2 \times 7=14$ hence 14 is multiple of 2 and is also a multiple of 7

1) Complete:

a) The multiples of 3 are \qquad
b) The multiples of 5 are: \qquad
c) The multiples of 12 are : \qquad
2) Choose the correct answer:
a) The multiple of all numbers is
$(0,1,10,11)$
b) The multiple of 4 is
$(9,16,26,33)$
c) 10 is the multiple of 2 and also multiple of $(3,4,5,8)$
d) Any even number is the multiple of
$(7,2,9,5)$
3) Write :
a) All the multiples of 2 that are less than 15
b) All the multiples of 5 between 4 and 44

4) Complete with multiples of 10:
a) < $38<$
b) \qquad < 79 <
c) \qquad < 111 <

" Divisibility "

Any number is divisible by another if the remainder of the division is zero.
A whole number is divisible by $\mathbf{2}$ if the whole number is even
A whole number is divisible by $\mathbf{3}$ if the sum of its digits is divisible by 3
A whole number is divisible by $\mathbf{5}$ if its units is $\mathbf{0}$ or $\mathbf{5}$
A whole number is divisible by $\mathbf{1 0}$ if its units is $\mathbf{0}$

1) Complete:
a) 12 is divisible by 3 because $12 \div 3=$ \qquad and the remainder =
b) 36 is not divisible by 5 because \qquad $\div 5=$ \qquad and the remainder $=$
c) 132 is by 10 because
2) Complete with divisible or not divisible:
a) 13 is by 2
b) 42 is by 7
c) 120 is. by 5
d) 325 is by 3
3) Choose the correct answer:
a) 74 is divisible by
$(2,3,4,5)$
b) 24 is not divisible by $(8,2,5,3)$
c) 250 is not divisible by $(5,3,2,10)$
d) $321+$ \qquad is divisible by2 (0, 2, 4, 3)

4) Complete:

a) The number is divisible by 10 if its units are
b) The two numbers 12 and 21 are divisible by
c) All even numbers are divisible by
5) Write:

The smallest and the greatest 3-digit numbers which are divisible by 5 are

" Factors "

If you know that: $6=1 \times 6$ and $6=2 \times 3$
The numbers $1,6,2,3$ are called factors of the number 6
1 is a factor of all numbers
2 is a factor of all even numbers

1) Complete:
a) The factors of 18 are :
b) The factors of 24 are:
c) The factors of 56 are:
2) Choose the correct answer:
a) 2 is a factor of \qquad $(41,303,330)$
b) The factor of all numbers is \qquad $(0,1,2)$
c) The number 7 has factors

Prime numbers "

The prime number is a whole number that has only 2 different factors. which are 1 and the number itself.

Like : $2,3,5,7,11,13,17,19,23,29,31,37,41,43,47, \ldots$ 2 is the smallest prime number.

2 is the only even prime number.
3) Complete with "prime number" or " non prime number" :
a) 5 is \qquad
b) 13 is \qquad
c) 25 is \qquad
d) 99 is \qquad

4) Complete:

a) The smallest odd prime number is
b) The prime number has two factors \qquad and
c) 1 is not a prime number because \qquad

5) Choose the correct answer:

a) All prime numbers are odd except \qquad
b) The numbers $1,3,5$ and 11 are all \qquad (prime , odd , even)
c) 2, 3 and 5 are prime factors of \qquad ($10,32,30$)
6) Factorize:
a) 16
b) 20
c) 86
$16 \mid$

d) The prime factors of 24 are \qquad
\qquad
\qquad and
e) Write all prime numbers less than 35

" Highest common factor (H.C.F) "

a) To find the H.C.F of 18 and 24 :

The factors of 18 are \qquad
The factors of 24 are \qquad
The common factors of 18 and 24 are \qquad
The H.C.F of 18 and 24 is \qquad
b) Find the common factors of 8 and 16
c) Find the H.C.F of 12 and 28
d) Find the H.C.F of $10,15,35$

" Lowest common multiple (L.C.M) "

a) To find the L.C.M of 3 and 6:

The multiples of 3 are \qquad
The multiples of 6 are \qquad
The common multiples of 3 and 6 are \qquad
The L.C.M of 3 and 6 is \qquad
b) Find the L.C.M for the numbers 8 and 18
c) Find L.C.M of numbers 12,24 and 36

Unit test

1)Complete:

a) is is the common multiple of all numbers
b) \qquad is the common factor of all numbers
c) The prime number has only \qquad factors
d) The number of factors of the prime number is \qquad
e) All prime numbers are odd except \qquad
f) The smallest prime number is \qquad
g) The only even prim number is \qquad
h) The smallest odd prim number is \qquad
i) Any even number is divisible by \qquad
j) The number is divisible by 5 if its units digit is \qquad
k) The number 351 is divisible by \qquad
I) Factors of 15 are \qquad
\qquad
m) Prime factors of 45 are \qquad and
n) The number of prime factors of 12 is \qquad
o) The smallest number divisible be $2,3,5$ is \qquad
p) The side length of a square = perimeter \qquad
q) The multiples of 6 is \qquad
r) $(0,5,10,15,25)$ are multiples of
s) All the multiples of a number are divisible by \qquad
2) Find the H.C.F and L.C.M of each of 8,12 and 16

" The Length "

Remember:

$1 \mathrm{~km}=1000 \mathrm{~m}$	$1 \mathrm{~cm}=10 \mathrm{~mm}$
$1 \mathrm{dm}=10 \mathrm{~cm}$	$1 \mathrm{~m}=100 \mathrm{~cm}$

* To convert from a larger unit of length to a smaller unit of length we multiply. ex: $1 \mathrm{~km} \times 1000=1000 \mathrm{~m}$ * To convert from a smaller unit of length to a larger unit of length we divide. ex: $10 \mathrm{~mm} \div 10=1 \mathrm{~cm}$

1) Complete the following:
a) $7 \mathrm{~cm}=$ \qquad mm.
b) $4 \mathrm{~cm}=$ \qquad mm.
c) $6 \frac{1}{2} \mathrm{~cm}=$ \qquad mm.
d) $150 \mathrm{~mm}=. \ldots \mathrm{cm}$.
e) $100 \mathrm{~mm}=$ \qquad cm.
f) $2.5 \mathrm{~m}=$ \qquad cm.
g) $50 \mathrm{~mm}=$ \qquad cm.
h) $700 \mathrm{~mm}=$ \qquad
i) $1 \mathrm{~m}=$ \qquad cm= \qquad mm.
j) $7005 \mathrm{~mm}=$ \qquad $. c m=$ \qquad m.

2) Arrange the following in ascending order:

a) $65 \mathrm{~cm}, 70 \mathrm{~mm}, \quad 2 \mathrm{~m}$.
b) $5 \mathrm{dm}, 35 \mathrm{~cm}, 1 \mathrm{~m}, 140 \mathrm{~mm}$.
c) $3 \mathrm{~km} \quad, \quad 2750 \mathrm{~m}, \quad 8000 \mathrm{~cm}$.
3) Arrange the following in descending order:
a) millimeter , decimeter , meter , centimeter
b) $50 \mathrm{~m}, 1500 \mathrm{~mm}, \quad 701 \mathrm{~cm}$
c) $57 \mathrm{dm}, 13 \mathrm{~m}, 1113 \mathrm{~mm}, 704 \mathrm{~cm}$

" Perimeter "

Remember that:

* The perimeter of any polygon is equal to the sum of its side lengths.
* Perimeter of a square $=$ side length $\times 4$
* Perimeter of a rectangle $=($ length + width $) \times 2$
* Perimeter of a triangle = sum of all side lengths.

1) Calculate the following:
a) Perimeter of a square of side length 4 cm .
b) Perimeter of a rectangle of dimension $40 \mathrm{~cm}, 30 \mathrm{~cm}$.
c) The side length of a square whose perimeter is 28 dm .
2) If the perimeter of a rectangle is 30 cm and its width is half its length. Find the length and the width of the rectangle.
\qquad
\qquad
3) Look at each of the following shapes, and then calculate the perimeter of shaded part in each of them:

Figure 1

Figure 2

Perimeter of shaded part in figure 1= \qquad
perimeter of shaded part in figure $2=$ \qquad

" The Area "

Remember:

* The Area is the inside space of a shape.
* Area of a square $=$ side length \times side length
* Area of rectangle $=$ length \times width

Therefore: Length of rectangle $=$ Area \div Width
Width of rectangle $=$ Area \div Length

* The units of Area:
$1 \mathrm{Km}^{2}=1000 \mathrm{~m} \times 1000 \mathrm{~m}=1000000 \mathrm{~m}^{2}$
$1 \mathrm{~m}^{2}=10 \mathrm{dm} \times 10 \mathrm{dm}=100 \mathrm{dm}^{2}$
$1 \mathrm{~m}^{2}=100 \mathrm{~cm} \times 100 \mathrm{~cm}=10000 \mathrm{~cm}^{2}$
$1 \mathrm{dm}^{2}=10 \mathrm{~cm} \times 10 \mathrm{~cm}=100 \mathrm{~cm}^{2}$

1) Complete:

a) The area of a square whose side length is 8 cm
$A=$ \qquad \times \qquad $=$ \qquad cm^{2}
b) The area of a square whose side length is 3 dm
$A=$ \times \qquad $=$ \qquad $\mathrm{dm}^{2}=$ \qquad cm^{2}
c) A square of perimeter 40 cm . Then the side length = \qquad $.4=$ \qquad And the area of this square $=$ \qquad \times \qquad $=\ldots \mathrm{cm}^{2}$
2) Find the area of a rectangle whose length is 70 cm and width is 50 cm in square decimeter.
3) Arrange the following units of area descendingly:
cm^{2},
dm^{2},
km^{2},
m^{2},
mm^{2}
4) Complete:
a) $3 \mathrm{~km}^{2}=$ m^{2}.
b) $7000000 \mathrm{~m}^{2}=$ \qquad km^{2}.
c) $75 \mathrm{~m}^{2}=$. dm^{2}.
d) $4500 \mathrm{dm}^{2}=$ \qquad
e) $850000 \mathrm{~cm}^{2}=$ \qquad $\mathrm{dm}^{2}=$ m^{2}.
5) The opposite figure represents a rectangle of dimensions 9 cm and 7 cm . Inside it there is a square of side length 6 cm .

Calculate:

1) The area of the shaded part.
2) The perimeter of the inner and outer boundary of the shape

\qquad
\qquad
\qquad
\qquad
\qquad

** With our best wishes **

Math Staff

* * * * * * *

Unit test

1) Complete:

a) The perimeter of the square $=$ \qquad \times
b) The perimeter of the rectangle $=(\ldots \ldots+$ \qquad) \qquad
c) The half perimeter of rectangle $=$ \qquad $+$ \qquad
d) The perimeter of the square of side length $5 \mathrm{~cm}=$ \qquad cm
e) The perimeter of the rectangle with dimensions 6 cm and $4 \mathrm{~cm}=$. dm
f) The side length of a square whose perimeter is 28 cm is cm
g) The area of square $=$ \qquad \times \qquad
h) The area of rectangle = \qquad \times \qquad
i) $2 \mathrm{dm}=\ldots \ldots . \mathrm{cm} \quad, 50 \mathrm{~cm}=\ldots . . \mathrm{dm} \quad, 8 \mathrm{~km}=\ldots \ldots . . \mathrm{m} \quad, 90 \mathrm{~m}$ $=$ \qquad dm
j) $260 \mathrm{~cm}=$ \qquad m \qquad cm
k) $3570 \mathrm{~m}=$ \qquad km, .m
2) A square its perimeter is 32 cm . Find its area.
\qquad
3) Find the perimeter and the area of the rectangle whose length is 5 cm and its width is 2 cm .

